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SUMMARY

An investigation has been conducted of isolated convergent-divergent noz-
zles to determine the effect of several design parameters on nozzle performance.
Tests were conducted using high-pressure air for propulsion simulation at Mach
numbers from 0.60 to 2.86 at an angle of attack of 0° at nozzle pressure ratios
from jet off to 46.0. Three power settings (dry, partial afterburning, and max-
imum afterburning), three nozzle lengths, and nozzle expansion ratios from 1.22
to 2.24 were investigated. In addition, the effects of nozzle throat radius
and a cusp in the external boattail geometry were studied.

The results of this study indicate that, for nozzles operating near design
conditions, increasing nozzle length increases nozzle thrust-minus-~drag perfor-
mance. Nozzle throat radius and an external boattail cusp had negligible
effects on nozzle drag or internal performance.

INTRODUCTION

Research on aircraft design relative to the installation of the propulsive
exhaust system into the airframe has received increasing attention in recent
years. Summaries of some of this effort are contained in references 1 to 4. 1In
reference 1, Nichols indicated that from the viewpoint of performance, exhaust-
nozzle/airframe integration is the most critical design feature of an dircraft.

Most current operational military aircraft have been designed for efficient
subsonic cruise and subsonic-transonic maneuverability; supersonic performance
has been considered a "fallout" or off-design condition. As a result, past and
current propulsion integration studies have emphasized the subsonic-transonic
speed regime with little data being obtained at supersonic conditions (ref. 5).
However, after analysis of the air operations during recent conflicts, much dis-
cussion has taken place concerning aircraft vulnerability over enemy territory;
one method proposed to reduce aircraft vulnerability is to provide efficient
supersonic cruise capability to future combat aircraft. The design guidelines
for military supersonic cruise fighter-type aircraft ("supercruiser") would be
substantially different from those of current combat aircraft which have fallout
or off-design supersonic performance and even from those of supersonic transport
type aircraft which have fallout or off-design subsonic performance. Indeed,
the supercruiser mission may include both subsonic and supersonic cruise seg-
ments. In this case, neither the subsonic nor the supersonic speed regimes can
be considered an off-design condition. The fact that many design guidelines
tend to be contradictory for the subsonic and supersonic speed regimes (ref. 5)
greatly aggravates the exhaust-nozzle/airframe integration problem. Supersonic
cruise with reduced power (nonafterburning or partial afterburning) has been
suggested as one method of improving supersonic cruise efficiency. Since cur-
rent fighter aircraft generally require afterburning power to fly at supersonic
speeds, wind-tunnel data on closed-down, dry-power nozzles at Mach numbers above
1.3 are almost nonexistent. Although reduced-power operation could reduce spe-



cific fuel consumption and also infrared signature, with current engines it
could also accentuate nozzle/airframe integration problems at supersonic speeds
because of increased boattail angle and closure area.

This paper presents the results of a parametric wind-tunnel investigation.
of isolated convergent-divergent nozzles which could be applicable to supersonic
cruise military aircraft. The effects of nozzle divergent-flap length (boattail
angle) on the internal and external performance of dry, partial afterburning and
maximum afterburning convergent-divergent nozzles are presented with expansion
ratios representative of both subsonic and supersonic operation. 1In addition,
the effects of nozzle divergence angle, throat radius, and external nozzle con-

tour are discussed.

This investigation was conducted in the Langley 16-Foot Transonic Tunnel
(16FTT) at Mach numbers from 0.60 to 1.20 and in the Langley Unitary Plan Wind
Tunnel (UPWT) at Mach numbers from 2.16 to 2.86. Jet total~pressure ratio was
varied from approximately 1.0 (jet off) to 15 (depending on nozzle power setting
and Mach number) in the transonic facility and to approximately 46.0 (110.0 for
two configurations) in the unitary plan tunnel. All configurations were tested
without tails and at 0° angle of attack.

SYMBOLS
All forces and angles are referred to the model centerline (body axis).

Wind axes are equivalent to body axes since angle of attack was 0° for the
current investigation.

Ap area of nozzle base at exit (includes flow area and physical nozzle
base area), cm?

Ag nozzle exit area, cm?

Ag projected area of metric break gap in axial direction, Ap - Ay, cm?

Aj internal-cavity cross-sectional area of model, cm?

Ap maximum cross-sectional area of model, 182.415 cm?

Ag sonic flow area, (Wp/Wi)Atr cm?

Ap nozzle geometric throat area, cm?

b axial distance from nozzle connect station (Sta. 137.16) to center of

radius leading to nozzle convergent section (see fig. 3), cm

CD,n nozzle total drag coefficient (External pressure + External friction),
Dn/%ePm

Cp,nf nozzle external-friction drag coefficient

(Cp)crit critical (locally sonic flow) pressure coefficient
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Cp,b nozzle base pressure coefficient

cp,n nozzle boattail static pressure coefficient, (pn - p_)/9,
Cg .stream thrust-correction factor

Df,cb friction drag on model centerbody, N

Dp nozzle drag (Pressure + Friction), N

dy diameter of nozzle base at exit, cm

de nozzle exit diameter, cm

dn maximum model diameter, 15.24 cm

d¢ nozzle geometric throat diameter, cm

F nozzle gross thrust, N

Fa,bal axial force measured by balance, positive forward, N
Fa,mom momentum tare axial force due to bellows, N

Fj ideal isentropic gross thrust, N

Fy vacuum thrust, N

A nozzle length, cm

lg projected axial length of nozzle divergent flap (axial distance from

nozzle throat to nozzle exit), cm

M free-stream Mach number

Mo jet-flow Mach number at nozzle exit

NRe Reynolds number based on total model length
Pe static pressure at nozzle exit, Pa

Pg local pressure in metric-break gap, Pa

Pi internal static pressure, Pa

Pn local nozzle static pressure, Pa

Pt,j jet total pressure, Pa

Pt,w free-stream total pressure, Pa

(Pt,j/Pw)des nozzle design pressure ratio for fully expanded isentropic flow



free-stream static pressure, Pa

Peo

Ao free-stream dynamic pressure, Pa

R gas constant for air, 287.3 J/kg-K

T, 5 jet total temperature, K

T, free-stream total temperature, K

Ve jet-flow velocity at nozzle exit, cm/sec

Wi ideal mass—-flow rate, kg/sec

Wp actual mass~flow rate, kg/sec

X axial distance measured from nozzle connect station, positive
downstream, cm

(x/l)sep theoretical external flow separation point given as fraction of nozzle
length

B nozzle terminal boattail angle, deg

Y ratio of specific heats, 1.3997 for air

8 nozzle exhaust divergence angle (see fig. 3), deg

0 nozzle internal convergent approach angle, deg

¢ meridian angle about model axis, positive for clockwise direction when
facing upstream, 0° at top of model, deg

Abbreviations:

A/B afterburning

Atm. atmospheric

Max max imum

R radius

Sta. station

Sub. subsonic

Super. supersonic

UPWT Unitary Plan Wind Tunnel

16FTT 16-Foot Transonic Tunnel



Configuration designations:

D dry-power nozzle

P partial-afterburning-power nozzle

A maximum-afterburning-power nozzle

S short (0.814 < 1/dy < 0.868) nozzle length
M medium (0.928 < 1/dp, < 0.978) nozzle length
L long (1.114 < 1/dp < 1.161) nozzle length

APPARATUS AND METHODS
Wind Tunnels

The experimental investigation was conducted in the Langley 16FTT and the
Langley UPWT. The Langley 16FTT is a single-return, atmospheric tunnel with a
slotted, octagonal test section and continuous air exchange. The tunnel has a
speed range capability from M = 0.20 to M = 1.30. High-speed tests were
performed in the low Mach number test section of the Langley UPWT, which is a
variable-pressure, continuous-flow facility. The test section is approximately
1.219 meters square and 2.134 meters long, and the nozzle leading to the test
section is of the asymmetric, sliding-block type which provides continuous varia-
tion in Mach number from about 1.50 to 2.90. A complete description of the wind
tunnels and their operating characteristics can be found in references 6 and 7.

Model and Support System

Photographs of the model installed in the Langley 16FTT and UPWT are shown
in figure 1, and a sketch of the sting-strut-supported single-engine model
(16FTT installation) with a typical nozzle installed is presented in figure 2.
The isolated (no empennage surfaces or afterbody boattail) nozzle model is com-
posed of three major parts, located as follows:

Model station, cm

Forebody:
16FTT e o & o o s s s s s s s s e s 8 s e o o s s s e o o 0 to 67.31
UPWT e o e & o s s s 8 s s s s s s e s e o a2 4 o s o e 15.24 to 67.31

Centerbody =« « = « o« o o o o o o o o o o o o s o s s o o o o 67.31 to 137.16

NOZZLIE o o« o o o s o o o s s o o o o o s s s o o a o o o o o 137.16 to exit

The axisymmetric forebody was nonmetric (not attached to balance). For tests in

the 16FTT, an ogive forebody (see fig. 2) starting at station 0 was used to
reduce the strength of the external flow expansion around the forebody shoulder.
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In order to reduce model length and avoid wall-reflected shocks at supersonic
speeds, a shorter conical forebody starting at station 15.24 (not shown) was
utilized for tests in the UPWT. As shown in figure 2, a 0.15-cm gap in the
external skin at the metric-break station (Sta. 67.31) prevented fouling
between the nonmetric forebody and metric centerbody and nozzle.

An external high-pressure air system provided a continuous flow of clean,
dry air in both facilities at a controlled temperature of about 300 K. Air was
brought through the support-system strut by six tubes and collected in a high-
pressure plenum located in the forebody (see fig. 2) and routed aft. The air
was then discharged perpendicularly into the integral-model centerbody/low-
pressure plenum/tailpipe through eight multiholed sonic nozzles equally spaced
around the aft end of the high-pressure plenum. This design minimized any
forces imposed by the transfer of axial momentum as the air passed from the non-
metric high-pressure plenum to the metric centerbody. Two opposing flexible
metal bellows are used as seals and serve to compensate for axial forces caused

by pressurization.

In the 16FTT, the model was located on the wind-tunnel center line. The
center line of the sting, which supports the strut in the 16FTT (see figs. 1
and 2), was 55.88 cm below the wind~tunnel center line. The sting portion of
the support system was 5.08 cm by 10.16 cm in cross section, with the top and
bottom capped by half-cylinders of 2.54-cm radius. The strut was 5 percent
thick with a constant 50.8~cm chord (see fig. 2) in the streamwise direction
and was swept 45°. In the UPWT, only the strut support was used and the model
was mounted from the tunnel sidewall (see fig. 1).

Nozzle geometry simulated a variable-geometry, balanced-beam, convergent-
divergent conical nozzle typical of those currently in use on modern fighter
aircraft but with a larger range of nozzle expansion ratio (Ag/Ag) and divergent
flap length. Figure 3 presents sketches and a table giving nozzle internal
and external geometry. The nozzles attached directly to the centerbody at sta-
tion 137.16. Nozzle power settings representing dry, partial-afterburning and
maximum-afterburning operation were investigated. Each nozzle power setting
was investigated with expansion ratios representative of subsonic (Ag/A¢ = 1.22
or 1.25) and supersonic (Ag/Ay = 1.69, 1.89, 1.97, or 2.24) operation. 1In
addition, each combination of nozzle power setting and expansion ratio was gen-~
erally investigated with either two or three different divergent flap lengths
lg. The short flap length represents a baseline nozzle which is typical of
current fighter aircraft hardware. The two longer flap lengths (higher nozzle
fineness ratio - 1/dp) represent nozzle designs which would be expected for air-
planes designed to cruise efficiently at supersonic speeds. WNozzle divergent
flap length varies slightly with nozzle power setting and expansion ratio for
each basic flap length (short, medium, or long), since axial distance (divergent
flap length defined along body axis) varies as the flap rotates. In addition to
these variables, two additional nozzles (see fig. 3(b)) were tested to investi-
gate the effects of a cusp in the external nozzle geometry and of a sharp throat.

Nozzle configurations have been assigned a coded configuration number to
facilitate discussion and data comparisons. The code has a format of letter-

number-letter where



(1) The first letter denotes nozzle power setting as follows:
D - dry
P - partial
A - maximum afterburning

{(2) The second character, a number, indicates the nozzle expansion ratio
A./A;.
e/t

(3) The last letter indicates nozzle fineness ratio or divergent flap length
as follows:

S - short; 0.814 < 1/d;, < 0.868
M - medium; 0.928 < I/d, < 0.978

L - long; 1.114 < 1/d; < 1.161

Instrumentation

A five-component balance was used to measure external (aerodynamic) and
internal (thrust) forces and moments (excluding rolling moment) on the model
downstream of station 67.31. (See fig. 2.) Jet total pressure was measured in
the centerbody at the location shown in figure 2 by means of a five-probe rake.
A thermocouple was used to measure jet total temperature. Air total pressure
and total temperature were also measured in the high-pressure plenum before the
airflow was discharged through the eight sonic nozzles into the centerbody.
These measurements were used in calculating the nozzle mass-flow rate W, as
explained in the section "Data Reduction."” 1In addition, an electronic turbine
flowmeter was used as a backup measurement of air mass-flow rate to the nozzle.

External static-pressure orifices were located on all nozzles at constant
values of x/1 as shown in figure 4. Internal pressures were measured in the
forebody cavity at six internal orifice locations. Pressure in the metric-break
gap (Sta. 67.31) was measured at four aft-facing orifice locations in the
forebody gap base.

Tests

Data were obtained in the Langley 16FTT at static conditions (M = 0) and
Mach numbers from 0.60 to 1.20 and in the Langley UPWT at static conditions and
Mach numbers from 2.16 to 2.86. The 16FTT is an atmospheric total-pressure
facility and the UPWT is capable of varying total pressure. Nominal values of
free-stream test conditions for each facility are presented in table 1. The
nominal values given in table 1 vary slightly with atmospheric conditions
(16FTT), addition of nozzle mass flow (UPWT), and nozzle length (NRre based on
total model length).



Angle of attack was held constant at 0° during the investigation. The
ratio of jet total pressure to free-stream static pressure was varied from
approximately 1.0 (jet off) to about 46.0, depending on Mach number. Two con-
figurations (P-2.24-S and P-2.24-L) were tested at nozzle pressure ratios up
to approximately 110.0 at M = 2.86 to simulate large plumes which could occur

for missile applications.

To insure a turbulent boundary layer over the nozzles, a 0.38-cm-wide tran-
sition strip of No. 100 carborundum grit was fixed 5.72 cm downstream of the
model nose in the 16FTT. In the UPWT, a 0.32-cm~wide transition strip of No. 35
grit was fixed 3.05 cm downstream of the model nose.

Data Reduction

All data for both the model and the wind tunnel were recorded simulta-
neously on magnetic tape. Approximately 11 frames of data, taken at a rate of
2 frames per second in the 16FTT, and 60 frames of data, taken at a rate of
30 frames per second in the UPWT, were used for each data point; average values
were used in computations. The average value of jet total pressure (average of
five probes, see fig. 2) was also used in all computations. The recorded data
were used to compute standard force and pressure coefficients. Drag coefficient
is referenced to model maximum cross-sectional area. :

At wind-on conditions, thrust minus nozzle drag was obtained from the
five-component balance and computed from the eguation

F - Dp = Fa,ba1 * (Pg,j — PolBg,j * (Pi,j = PoAi,j

1 Jj=1

4
J:

6

- Fa,mom * Df,cb (M

Included in the balance term Fp, a1 are external and internal axial forces on
the metric centerbody and nozzle including thrust, nozzle drag (friction and
pressure), centerbody friction drag (pressure drag equal to zero since center-
body has no projected area), axial force resulting from a pressure-area term
acting at the metric break, and bellows momentum tares. The second and third
terms of equation (1) correct the balance measurement for pressure-area forces
acting at the metric break. These terms arise from the fact that the model is
a partially metric, afterbody propulsion model. These terms would not exist for
typical aerodynamic studies of completely metric (no metric break) models. The
fourth term of equation (1) corrects the balance measurement for bellows momen-
tum tares. Although the bellows arrangement was designed to minimize pressure
and momentum interactions with the balance, small-bellows tares on axial force
still exist. These tares result from a small pressure difference between the




ends of the bellows when internal velocities are high and also from small 4if-
ferences in the forward and aft bellows spring constants when the bellows are
pressurized. Bellows tares were determined by running calibration nozzles with
known performance; more detailed discussion of this procedure is contained in
references 8 and 9. The last term of equation (1) removes the friction drag of
the cylindrical centerbody (Sta. 67.31 to Sta. 137.16) from the balance measure-
ment. Friction drag of the centerbody was removed from all performance param-
eters since this part of the model is not actually part of the nozzle design.
Friction drag was calculated using the Frankl and Voishel equation for compres-
sible, turbulent flow on a flat plate as given in reference 10.

Nozzle drag D, was obtained for each configuration by adding nozzle pres-
sure drag to a computed value of nozzle skin-friction drag (method of Frankl and
Voishel). Nozzle pressure drag was obtained by a pressure-area integration
using measured nozzle static pressures over the external nozzle boattail surface
and base (Sta. 137.16 to end of nozzle). In the 16FTT, all nozzle static pres-
sures were used in the pressure-area integration; because of indications of
support-strut interference on the bottom row of nozzle pressure orifices (see
fig. 4, ¢ = 180°) in the UPWT, only the top row (¢ = 0°) of pressure orifices
was used in the pressure-area integration at M = 2,16 to M = 2.86.

Nozzle internal performance (thrust) was obtained at static conditions
directly from equation (1) since pressure and friction drag equal zero at
M = 0. At wind-on conditions, nozzle internal performance was computed from
the equation

F = (F - D) + Dy (2)

The first term (F - D) of equation (2) is obtained from equation (1), and the
second term of equation (2) D, is obtained from the pressure-area integration
and friction drag calculation discussed previously. Internal nozzle performance
F should be independent of Mach number unless the nozzle is not choked (sub-
sonic internal flow) or the internal jet exhaust flow separates from the nozzle
divergent flap.

The primary measurement of nozzle mass-flow rate W was obtained from
total pressure and temperature measurements in the high-pressure plenum. The
discharge coefficients Wp/Wi of the eight sonic nozzles in the high-pressure
pPlenum were determined by testing calibration nozzles with known flow charac-
teristics. The sonic nozzle discharge coefficient was combined with the total
pressure and temperature measured in the high-pressure plenum to determine the
mass-flow rate. A detailed discussion of this procedure can be found in refer-
ence 8. Using the mass-flow rate thus determined, ideal thrust of the nozzle
can be computed from the equation

Y

-1
2y Py Y
1 - [= (3)
Y- Pt,

Fj = Wp||(RT¢,5)



Unfortunately, problems were experienced in the UPWT with measurements
required for both the primary (high-pressure plenum) and backup (electronic tur-
bine) methods of determining mass-flow rate. The following procedure was used
to correct data obtained in the UPWT. As mentioned previously, thrust F and
thrust ratio F/F;j are independent of free-stream Mach number when the nozzle
is choked and no internal flow separation exists. Therefore, the static (M = 0)
thrust ratio data obtained in the UPWT was curve fit to the static and wind-on
thrust ratio data obtained in the 16FTT at all values of nozzle pressure ratio
which did not obviously produce internal flow separation (nozzle pressure ratios
near and above the design value given in fig. 3). Using these values of F/F;
and measured values of F, the values of mass-flow rate W, were determined
from equation (3), which gave the required values of ideal thrust Fj. The
values of W, determined in this manner were then combined with computed values
of ideal mass-flow rate W;j; to provide adjusted values of discharge coefficient
Wn/W; for the UPWT. These adjusted values of discharge coefficient result in
the same values of wind-off thrust ratio in the UPWT as obtained in the 16FTT.
These adjusted values are presented with the basic data in a later section of
this paper. The static (M = 0) nozzle~pressure-ratio range did not cover the
range tested at M = 2.16 to 2.86 in the UPWT. However, the adjusted values of
discharge coefficient determined by this procedure were found to be independent
of nozzle pressure ratio for most configurations and were a constant value for
Pt,j/Pw > 20.0 for all configurations. Thus, at wind-on conditions in the UPWT,
this constant value of adjusted discharge coefficient was assumed at all nozzle
pressure ratios tested and was used to determine the value of Wy used in the
ideal thrust (eq. (3)) and thrust ratio F/Fj. As is shown subsequently, this
procedure produces consistent UPWT data which agree well with the 16FTT data and
theoretical values of F/F;j. The adjusted values of discharge coefficient con-
tain some of the suspect measurements in ideal mass-flow rate which caused the
original problem. Thus, little or no attention should be paid to the absolute
values of the adjusted discharge coefficients. However, since discharge coeffi-
cient is independent of nozzle pressure ratio at values above choke and the dis-
charge coefficients obtained in the 16FTT were not adjusted but are presented
as measured, these values can be used as the correct indication of discharge-

coefficient magnitude.

Stream thrust-correction factor Cg 1is used in this paper as an indica-
tion of real nozzle flow losses excluding overexpansion and underexpansion
losses. As shown in the following derivation, stream thrust-correction
factor is a function of nozzle geometry and is independent of ambient pressure
(and thus free-stream Mach number). Use of the momentum equation for one-
dimensional, isentropic flow in a nozzle provides the following well-known
expression for thrust (see ref. 11):

F = vae + Ae(pe - Pm) (4)
or in ratio form

WpVé + Ao (Pe — Py)
= (5)

F
Fj Fi
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From equation (4), vacuum thrust or stream thrust (p, = 0) is seen as follows:
Fy = WpVé + AgpPe (6)
Substituting equation (6) into equation (5) gives

F Fy - Aepw g
— = — - (7)
Fi Fji

Dividing the numerator and denominator of equation (7) by Pt,jAs results in

Fy AgP,,
pt:jAs Pt,jAs

(8)
i Fi
Pt,jhs

where Ag is the sonic flow area. Viscous effects reduce the amount of flow
passing through the geometric throat due to momentum and vena contracta losses.
The sonic flow area is proportionately less than the geometric throat area A
by the ratio of actual to ideal mass-flow rate. Thus,

Ag = (Wp/Wi)Ag (9)

The dimensionless term Fv/Pt,jAs in equation (8) is the vacuum thrust coef-
ficient for isentropic, one-dimensional flow. However, real nozzle flows are
not isentropic or one-dimensional. Thus, maximum values of vacuum thrust
coefficient are unattainable. Typical real nozzle losses include nonuniform
profiles at the throat, friction losses, shock losses, and divergence losses
downstream of the throat. In general, such losses can be combined into a sin-
gle term, stream thrust~correction factor, which is defined as

Fy
~ Pt,jAs/actual

Cg = (10)

Fy
Pt,jAs/ideal
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The ideal or isentropic vacuum thrust coefficient in the denominator is some-
times called the impulse function and is defined in reference 11 as

Fy Pe BRe
v . —(1+ Y2 ) (1)
Pt,jAs/ideal Pt,j As

where pe/Pt,j and Mg are functions of nozzle geometry Ag/At and flow con-
ditions Wp/Wj (together yield A./Ag) and are independent of ambient pressure
(no overexpansion or underexpansion losses) and free-stream Mach number. Sub-
stituting equations (10) and (11) into equation (8) yields

Pe 2R P, Re
Cq —(1 + YMe2> - —
Fo Pt,j Bs Pt,j As (12)
Fi Fi
Pt,jAs

Solving for Cg and simplifying yields the following expression, used to com-
pute the stream thrust-correction factors presented in this paper:

F Ae Py
—— o — ———
Pt,jAs As Pt,j
Cg = (13)
Pe Ae

—(1 + M 2)
pt,j As( €

where F is the measured nozzle thrust obtained as discussed previously in this
section.

Internal thrust losses in nozzles with nonisentropic divergent flap con-
tours result from nozzle exit momentum vectors (radial velocity components)
which are not aligned with the thrust (or body-axial) axis because of nozzle
wall divergence at the exit. The divergence loss for the nozzles of this
investigation is estimated by using the following theoretical equation from
reference 12:

Divergence loss = 1.0 - 0.5(1 + cos §) (14)

12




DISCUSSION
Basic Data

The basic force (drag and thrust) data are presented in figures 5 to 23
as a function of nozzle pressure ratio pt,j/p for all configurations at all
Mach numbers investigated. Each figure.presents basic data for one configu-
ration and consists of four parts (with exception of fig. 22, configuration
P-2.24(Sharp)-L, which was not tested at M > 1.20) organized as follows:

Part (a) - Presents nozzle drag coefficient- CD,n for all Mach numbers.

Part (b) — Presents thrust ratio F/F; and discharge coefficient W i
obtained in the 16FTT (0.00 £ M £ 1.20). Also shown, as solid symbols and dash-
dot-dash line, are adjusted data (see section entitled "Data Reduction") at
M = 0.0 £from the UPWI. Theoretical estimates of thrust ratio are shown as a
dashed line.

Part (c) - Presents thrust ratio and adjusted discharge coefficient (dash-
dot—-dash line) obtained in the UPWT (M = 0.00, 2.16, 2.50, and 2.86). Thrust
ratio values were obtained by use of the adjusted values of discharge coef-
ficient as explained in the data reduction section of this paper. The dashed
line again represents theoretical estimates of thrust ratio.

Part (d) - Presents nozzle thrust-minus-drag ratio (F - D,)/F; for all
Mach numbers.

Nozzle drag coefficient.- Nozzle drag coefficient, shown in part (a) of
figqures 5 to 23, exhibits trends with increasing nozzle pressure ratio which
are similar to previous studies of nozzle drag (refs. 13 and 14). As a result
of a base-bleed effect, a significant drag reduction generally occurs with
initial jet operation. Then, as nozzle pressure ratio is increased from very
low values, jet entrainment effects tend to dominate the flow field, and nozzle
drag increases as a result of the aspiration caused by the pumping action of
the jet exhaust. At a nozzle pressure ratio generally between 2.0 and 4.0, a
maximum value of jet-on drag is reached and any further increase in nozzle
pressure ratio reduces nozzle drag as plume blockage effects become dominant
and the compression region at the nozzle trailing edge is increased in strength.

It is interesting to note that negative nozzle drag (thrust) was obtained
on several configurations. (See figs. 6, 7, 11, 12, 14, and 17.) Negative noz-
zle drag can be produced by substantial pressure recovery over the nozzle boat-
tail at subsonic speeds and by jet exhaust pressurization of separated and/or
base regions at supersonic speeds. Nozzle pressure distributions are discussed
in a subsequent section of this paper. Unfortunately, negative nozzle drag
occurs only for unrealistic test conditions, that is, at nozzle pressure ratios
which are higher than typical airplane operating nozzle pressure ratios (fig. 6,

. for example) or at nozzle expansion ratios which are too low for the test Mach
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At supersonic speeds, nozzle boattail pressure distributions on configura-
tions with large boattail angles (for example, see figs. 24 to 26) are charac-
terized by expansion of the external flow down the nozzle boattail until a stand-
ing shock is reached, after which the external flow is completely separated.

Jet interference effects are limited at supersonic speeds and do not feed for-
ward of the standing shock wave. However, jet operation has a large impact on
the location of the standing shock wave and thus controls the size of the sepa-
rated flow region; jet interference effects in this region are large. The
method-of-characteristics theoretical estimate (see fig. 24(c)) generally indi-
cates the correct data trend of the pressure distributions at supersonic speeds
until the standing shock and attendant separated flow region on the nozzle boat-
tail is reached, at which point the experimental data depart from the trend
established by the theory. Thus, agreement between experiment and theory
becomes worse with increasing nozzle pressure ratio. Also, the theoretical
estimate of boattail static pressure coefficient was generally too low over the
entire nozzle boattail length. This was probably caused by the inviscid assump-
tion in the theoretical method. A check calculation using a boundary-layer dis-
placement thickness indicated this to be the case.

Typical nozzle boattail pressure distributions on configurations with small
boattail angles (for example, see figs. 39 and 40) are characterized at all Mach
numbers by a weak expansion region at the nozzle shoulder and little or no down-
stream pressure recovery. The data also indicate little or no external flow
separation for these configurations. Jet interference effects at subsonic
speeds again feed all the way forward to x/! = 0.025 but, at supersonic speeds,
are generally limited to the last two orifice locations near the nozzle exit
(x/1 = 0.875 and 0.950). Although the theoretical method of reference 15 gener-
ally provides better agreement with data at the nozzle shoulder for low boattail
angle nozzles (no locally supersonic flow) than for high boattail angle nozzles,
it underpredicts the negative magnitude of pressure coefficient at M = 0.90.
This is because the inviscid, one-dimensional solution for the jet exhaust flow
neglects the effects of jet plume entrainment.

Pressure distributions on configurations with nozzle boattail angles
between the two extremes discussed previously can be found in figures 27 to 38.
The method-of-characteristics estimate of the pressure distributions for config-
uration P-2.24-S (fig. 31) at M 2 2.16 is in good agreement with the experi-
mental data until a standing shock on the nozzle boattail is reached.

Stream Thrust-Correction Factors

Stream thrust-correction factors (see section entitled "Data Reduction")
for each nozzle investigated are presented in figure 43 as a function of nozzle
pressure ratio. Data are presented for three test Mach numbers for each config-
uration. As discussed previously, stream thrust-correction factor Cg is a
function of nozzle geometry and is independent of ambient pressure and thus
free-stream Mach number. In addition, Cg 1is independent of nozzle pressure
ratio Pt,j/Pm when the nozzle is flowing full. Internal jet-flow separation
would obviously have a large effect on static pressure at the nozzle exit, and
therefore on the ideal vacuum thrust coefficient (egs. (10) and (11)). The data
for the stream thrust-correction factor are shown in figure 43 and are essen-
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tially independent of both Mach number and nozzle pressure ratio over a range of
nozzle pressure ratios indicated in figure 43 by the solid-line fairing. This
solid-line fairing represents a constant value of Cg obtained by averaging all
data over the nozzle pressure ratio range indicated by the fairing. At nozzle
pressure ratios lower than those faired, large variations in Cg occur with
varying Mach number and especially with varying nozzle pressure ratio. This
variation in Cg indicates internal jet-flow separation from the divergent
nozzle walls over this range of nozzle pressure ratio. As noted in the discus-
sion' of the internal nozzle performance data (thrust ratio data in figs. 5 to
23), the nozzle pressure ratio required to eliminate internal flow separation
increases with increasing nozzle expansion ratio. Similar results are indi-
cated by the Cg data (nozzle pressure ratio at which Cg becomes a constant)
in figure 43. However, the Cg data indicate higher values qf Pt,j/Pm
required to eliminate internal separation than estimated from the thrust ratio
data. For example, based on the Cg data, internal flow separation appears to
occur at the following nozzle pressure ratios:

A

Pt,j/Pe < 3.0 to 5.0 for Ag/Agp S 1.25

pt,j/poo < 5.0 to 6.0 for Ay/A¢ 1.69

Pt,§/Pp < 5.0 to 7.0 for 1.69 < Ag/Ap £ 1.97
Pt,j/Ps, < 6.0 to 8.0 for Ag/Ap = 2.24

This result indicates that Cg 1is a more sensitive parameter than F/F; for
indication of nozzle internal flow separation. Comparison of the nozzle pres-
sure ratios required to eliminate internal separation with the design nozzle
pressure ratios (fig. 3) indicates that, even though the nozzle is operating
overexpanded (pt,§/P, < (Pt,j/P,) des) s the nozzle reaches a full flowing condi-
tion (no internal separation) at nozzle pressure ratios well below design, espe-
cially for the higher expansion ratio nozzles.

Performance Comparisons

In order to simplify data analysis, various performance parameters have
been cross-plotted at selected nozzle pressure ratios. Figure 44 presents a
typical variation of nozzle pressure ratio with Mach number for a turbofan
engine, which was used for comparison purposes in this investigation. Although
discussion for this particular schedule of nozzle pressure ratio as a function
of M would generally be applicable for other schedules, the relative differ-
ences between comparisons may vary.

Effect of nozzle length on drag coefficient.- The effect of nozzle length
on nozzle drag coefficient for each test Mach number at typical operating noz-
zle pressure ratios is presented in figure 45. As shown, the effect of nozzle
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length on drag is dependent on nozzle power setting, expansion ratio Ag/Ag,
and Mach number. In general, the effect of nozzle length becomes more signif-
icant as power setting and/or expansion ratio is reduced (boattail angle
increased). Also, the most pronounced effects of nozzle length occur in the
speed range from M = 0.90 to 1.20; nozzle length effects are small at high

supersonic speeds.

In general, nozzle drag coefficient for configurations with low expansion
ratios (circle symbols) decreases with increasing nozzle length at all power
.settings for M £ 1.2. However, this beneficial effect is more pronounced at
the dry power setting than at the Max A/B power setting. At M 2 2.16, the
medium length nozzle has the lowest drag at the dry power setting, and increas-
ing nozzle length increases drag at the Max A/B power setting. For nozzles
with high expansion ratios (square symbols), nozzle drag is generally decreased
by increasing nozzle length at dry power setting, but the short or medium length
nozzles have the lowest drag at partial A/B or Max A/B power setting.

Nozzle drag on configurations for which increasing length increases drag
(generally high power setting and/or expansion ratio - small boattail angle) is
dominated by viscous effects; that is, friction drag is increased more than
pressure drag is reduced as nozzle length is increased. This effect might be
expected since nozzle pressure drag approaches zero (sSee section entitled
"Nozzle Drag Coefficient") for nozzles with small boattail angles (little pro-
jected area in axial direction), especially at high supersonic speeds. Nozzle
drag on configurations for which increasing length decreases drag (generally
low power setting and/or expansion ratio - large boattail angle) is dominated
by pressure effects.

It should be noted that increasing nozzle length affects internal perfor-
mance and nozzle weight in addition to external drag. Thus, relative ranking
of nozzles should not be attempted based on nozzle drag alone. Nozzle length
effects on internal performance are discussed in a subsequent section of this
paper. Although increased nozzle length results in higher nozzle weight, the
detailed study required to provide this trade information is beyond the scope
of the current investigation.

Effect of nozzle length on internal (thrust) performance.- In addition to
nozzle external geometry, varying nozzle length also causes a variation in noz-
zle internal geometry. For a constant power setting and expansion ratio,
increasing nozzle length decreases nozzle divergence angle ¢ for the nozzles
of this investigation. As discussed previously, stream thrust-correction factor
Cg is a measure of nozzle internal flow (thrust) losses resulting from nozzle
geometry effects., Figure 46 shows the effect of nozzle divergence angle (nozzle
length) on stream thrust-correction factor. The values of Cg shown in fig-
ure 46 correspond to the average constant values represented by the solid-line
fairings in figure 43 for each configuration. Also shown in figure 46, as
dashed lines, are estimates of divergence losses obtained from equation (14) in
the section entitled "Data Reduction.”

As shown in figure 46, decreasing divergence angle (increasing nozzle
length) decreases internal performance for nozzles having low expansion ratios
Ao/A¢. At first, this appears to be a data anomaly since divergence losses are
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shown to decrease with decreasing divergence angle. However, for nozzles with
low expansion ratios, substantial increases in nozzle length are required for
small decreases in divergence angle. Thus, only small reductions in divergence
losses are possible by increasing nozzle length. For example, increasing diver-
gent flap length 1§ by 65 percent (from 1lg/dp = 0.447 to lg/dp = 0.740) on
the dry power nozzles with Ag/A¢ = 1.22 results in only a 1.55° reduction in
§ (from & = 3.60° to § = 2.059, see fig. 3). This divergence angle reduc-
tion results in a reduction of only 0.0003 in divergence losses (or increase in
Cg). An increase in nozzle length of this magnitude, however, would result in
a substantial increase in nozzle internal friction losses. Thus, for nozzles
with low expansion ratios, it is possible that decreasing divergence angle by
increasing nozzle length could result in small internal-nozzle performance
(thrust) penalties. For nozzles with high expansion ratios, decreasing diver-
gence angle (increasing nozzle length) reduces divergence losses and increases
internal-nozzle performance at all power settings as expected.

Power—setting and expansion-ratio variations have only small effects on
nozzle internal losses resulting from nozzle geometry (note that Cg does not
account for nozzle underexpansion or overexpansion losses). For example,
values of Cg for the nozzles with A /A = 1.69, 1.89, and 2.24 at the par-
tial A/B power setting (§ ~ 11.7° for all three nozzles) vary by only 0.005.
At the Max A/B power setting, the values of Cg, which indicate internal losses
less than predicted by divergence angle alone, are probably caused by test
accuracy {(approximately 0.005 in Cg).

Effect of cusp in external boattail.- Many operational nozzles have cusps
in the external boattail contour when operating at expansion ratios greater than
required for subsonic cruise (Ag /Ay ~ 1.20) or power settings greater than dry
power (partial or Max A/B). This cusp is formed at the external flap hinge line
as nozzle exit area is increased. The effect of a cusp on nozzle performance
was investigated in the current study by testing the long, Max A/B nozzle with
Ao/A¢ = 1.25 (configuration A-1.25-L) with and without an external cusp in the
external geometry at x/1 = 0.183. All other nozzle design parameters were held
constant. (See fig. 3.) The effects of an external cusp on selected nozzle
boattail pressure distributions and on nozzle boattail drag are presented in
figures 47 and 48, respectively.

As shown in figure 47, an external cusp tends to decrease nozzle static
pressure coefficients immediately upstream of the cusp and increase nozzle
static pressure coefficients downstream of the cusp. The pressure distributions
at supersonic speeds, particularly at M = 1,20, indicate a standing shock wave
at the cusp location (x/1 = 0.183). Although the effect of the cusp on nozzle
static pressure diminishes with increasing distance downstream of the cusp, it
tends to persist all the way to the nozzle exit, particularly at M = 1.20.

As noted, an external cusp produces opposite effects on static pressure
coefficients upstream and downstream of the cusp; these opposite effects tend
to offset each other when the static pressures are integrated to obtain nozzle
drag. Figure 48 shows that the effect of the external cusp on.nozzle drag is
negligible.
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Effect of throat radius.- In order to determine the effect of throat radius
on nozzle performance, the long, partial A/B (P-2.24-L) nozzle configuration
with Ag/Ap = 2.24 was tested with both a radius and sharp corner (see fig. 3)
at the throat. A comparison of the internal performance (thrust ratio) for
these configurations is presented in figure 49. The sharp throat configuration
was not tested at M > 1.20 since thrust ratio is independent of Mach number
for fully developed nozzle flow. The results in figure 49 indicate that the
effect of throat radius on thrust ratio is small at all Mach numbers except when
nozzle pressure ratios are less than 2.5. At nozzle pressure ratios greater
than 2.5, the configuration with a radius at the throat (P-2.24-L) generally has
slightly higher performance than the configuration with a sharp corner at the
throat (P-2.24(Sharp)-L). The effect of throat radius diminishes with increas-
ing nozzle pressure ratio. At nozzle pressure ratios greater than 6.0, the
values of Cg for these two configurations are nearly identical (see
fig. 43(f)), which indicate that throat radius has little effect on nozzle
internal performance when no internal flow separation exists.

Effect of Mach number.~ Nozzle drag coefficient Cp,ns thrust ratio F/Fy,
and thrust-minus-drag ratio (F - Dj)/Fj are presented as a function of Mach
number in figures 50, 51, and 52, respectively. These summary figures were
obtained by cross-plotting the data from figures 5 to 23 at a typical operating
pressure ratio (see fig. 44) for each Mach number tested. Data for low-
expansion-ratio nozzles (Ag/Ay £ 1.25) are presented at M £ 1.20 on the left
side of each figure and data for high-expansion-ratio nozzles (A /At 2 1.69)
are presented at M 2 1.20 on the right side of each figure. Full-scale oper-
ational nozzles typically have variable-expansion ratios between minimum and
maximum values which are set by nozzle hardware limitations. Thus, as opera-
tional airplanes accelerate through the Mach number range (and nozzle pressure-
ratio range as shown in fig. 44), the nozzle expansion ratio is controlled such
that the nozzle operates at the design pressure ratio for each flight Mach num-
ber. Obviously, this is not possible with subscale model hardware without a
great deal of expense (remotely variable nozzle or many configurations). Thus,
with fixed model hardware (fixed Ag/A¢), each model nozzle configuration
operates on design at only one Mach number and nozzle-pressure-ratio condition
(design nozzle pressure ratio from fig. 3 and Mach number from fig. 44). The
on-design operating condition for each configuration tested is indicated in
figures 50 to 52 by crossmarks on the data fairings.

As shown in figure 50, nozzle drag increases rapidly with increasing Mach
number in the transonic speed regime (0.8 < M < 1.,2). Above M = 1.2, nozzle
drag coefficient decreases with increasing Mach number. Nozzle drag coefficient
decreases with increasing nozzle power setting and, at a constant power setting,
decreases with increasing expansion ratio. Maximum thrust ratio occurs near the
on—-design operating condition as shown in figure 51. Nozzle overexpansion
losses occur at Mach numbers below the on-design value and nozzle underexpansion
losses occur at Mach numbers above the on-design value. Thrust-minus-drag ratio
(€ig. 52), which combines both external and internal losses, indicates substan-
tial losses (1.5 to 13.5 percent) in the transonic speed range due primarily to

high nozzle drag.

On-design configuration comparison.- Performance comparisons for each noz-
zle configuration tested are presented in figure 53 at on-design operating con-

20



ditions (cross—-plot of on-design data, crossmarks, from figs. 50 through 52).

It should be noted that these data are for an isoclated (no wings or tails) model
and installation effects would have to be accounted for in an actual airplane
configuration.

For all configurations tested, increasing nozzle length for constant noz-
zle power setting and expansion ratio increases overall nozzle performance
(F --Dy)/Fj. However, it is interesting to note that although this same result
was obtained for both subsonic and supersonic mission segments, it was caused
by different and opposite effects in each speed regime. For subsonic mission
segments shown in figure 53(a) for low expansion ratios, increasing nozzle
length decreased nozzle drag coefficient Cp,n (top part of figure), but also
decreased nozzle thrust ratio F/Fj; (total bar length on bottom part of figure)
except for the long, dry-power nozzle configuration. These results and their
causes were discussed previously. Although these effects tend to offset each
other, the drag reduction with increasing nozzle length was greater than the
internal thrust loss, such that overall nozzle performance (shaded portion of
bar on bottom part of figure) increased with increasing nozzle length.

For supersonic mission segments with high expansion ratios (fig. 53(b)),
increasing nozzle length increased nozzle thrust ratio but also generally
increased nozzle drag coefficient (except for the dry-power nozzle). Similar
to results at subsonic speeds, these effects also tend to offset each other.
However, at supersonic speeds, the increase in thrust ratio with increasing
nozzle length was greater than the performance loss associated with the
increased nozzle drag. Thus overall nozzle performance again increased with
increasing nozzle length.

CONCLUSIONS

An investigation has been conducted in the Langley 16-Foot Transonic Tunnel
and the Langley Unitary Plan Wind Tunnel of convergent-divergent nozzles appli-
cable to reduced-power supersonic-cruise aircraft. Tests were conducted using
high-pressure air for propulsion simulation at Mach numbers from 0.60 to 2.86,
at an angle of attack of 0°, and at nozzle pressure ratios from jet off to 46.0.
Results from this study indicate the following conclusions for nozzles operat-
ing near design conditions:

1. For constant nozzle power setting and expansion ratio, increasing nozzle
length increases overall (thrust-minus-drag) nozzle performance.

2. Increasing nozzle length for nozzles with low expansion ratios generally
decreases nozzle drag (improved pressure recovery) but also decreases nozzle
internal performance (increased internal friction losses).

3. Increasing nozzle length for nozzles with high expansion ratios

increases internal-nozzle performance (reduced divergence losses) but generally
also increases nozzle drag (increased external friction drag).
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4. A cusp in the external nozzle boattail geometry caused offsetting trends
in the boattail static pressure distributions and thus produced negligible

effects on nozzle boattail drag.

5. Throat radius had a negligible effect on nozzle internal performance at

nozzle pressure ratios above 2.5.

Langley Research Center
National Aeronautics and Space Administration

Hampton, VA 23665
November 4, 1980
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TABLE 1.- NOMINAL FREE-STREAM TEST CONDITIONS
M Facility pﬁﬁg' i"rﬁ’; ﬁg; Ttﬁ"? NRe
" 0.00 16FTT 101.4 [ 101.4 | ———- Atm. | ——m——m———
.00 UPWT 20.7 20.7 | ———- Atm. | =—me—————e
.60 16 FTT 101.4 79.6 | 20.1 319 15.9 x 106
.80 66.5 | 29.9 329 18.3
.85 63.2 | 32.1 331 18.6
.90 60.0 | 34.1 333 18.9
.95 56.5 | 35.9 336 19.1
1.20 41.7 | 42.1 339 19.7
2.16 UPWT 64.1 6.4 | 20.7 325 9.0
2.50 76.5 4.5 | 19.3
2.86 * 93.1 3.1 | 17.9 * *
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Figure 1.-

(a) Langley 16-Foot Transonic Tunnel.

Photographs of model installed in wind-tunnel facilities.

" 1-78-5575
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Figure 2.- Sketch showing general arrangement of model (16FTT installation).
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Sketch typical except for configurations P-2.24 {sharp)-L and A-1.25-L {cusp}
Sta. 137.16

— p

15.24 R L21R ¢, 4

dm=15.24 -] r— b

2.54R

Conical surface tangent
to 15.24-cm radius

Note: Values for dimension b are 1.15 for dry-power nozzles, 0.98 for partial A/B
power nozzles, and 0.05 for Max A/B power nozzles.

Design dimensions
Configuration ;ﬁ&w gﬁ; O /Pl | G o | 8 om [ Aa Tera T ua Taga Tasa; o des 6, ceg [ B, deg
D-1.22-S Sub. cruise Dry 4.00 7.57 836 | 1.22 |0.447 |0.831 | 0.310 | 0.970 { 37.93 | 3.60 [ 18.30
D-1.22-M ¢ 557 | .941 2.70 | 15.40
D-1.22-L 40 | 1124 2.05 | 12.30
D-2.24-S Super.’ cruise 12.90 1.33 | 2.24 | 430 | .814 | .565 .978 16.50 | 9.70
D-2.24-M ¢ J' .544 | .928 13.00 | 8.30
D-2.24-L 730 [ 1.114 9.70 | 6.70
P-1.25-M Sub. accell. | Partial A/B 4.25 9.08 | 10.15 | 1.25 | .55 [ .966 | .455 | .975 |22.73 | 4.00 | 10.50
P-2.24-S Super. cruise 12.90 13.59 | 2.24 | .422 | .832 | .8l 9% 20.00 | 3.55
P-2.24-M # 538 | .948 * J’ 15.60 | 3.10
P-2.24-L 725 11,135 1.60 | 2.60
. P-1.69-S .8 1181 | 1.69 | .438 | .848 | .614 | .979 .77 | 7.9
P-1.89-M 9,59 12,48 | 1.89 | .586 | .956 | .64 .980 1.72 | 5.40
A-1.25-S Sub. combat | Max A/B 4.2 10.36 | 11.58 ( 1.25 | .445 | .88 | .590 ( .978 | 1L.77 | 5.30 | 830
A-1.25-M L .556 | .978 415 | 17.20
A-1.25-L 739 | 1161 3,10 | 6.00
A-1.97-S Super. dash 10.36 14.53 | 1.97 | .42 | .848 | .925 .983 18.60 | 1.30
A-1.97-L Y ¥ 721 | 1150 Y Y 11.00 .97
P-2.28isharpl-L | Super. cruise | Partial A/B | 12.90 9.08 | 13.59 | 2.24 | .725 |1.13%5 | .81l 9% | 2127 | 1154 | 2.60
A-1,25-Lcusp) | Sub. combat | Max A/B 4.25 10.36 § 1158 | 1.25 | .739 [1.161 | .59 978 | 1177 | 3.10 [ 5.60

(2a) Parametric nozzle set.

Figure 3.- Sketches and geometric parameters for test nozzles. (All dimensions
in cm unless otherwise noted.)
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Figure 4.- Sketch of nozzle showing external pressure orifice locations (typical for all
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Configuration D-1.22-S

M = 0.60, CD,nf = 0, 0063
.08
.04
“zgﬁj
0
M = 0.80, CD,nf = 0.0060

M = 0.85, CD'nf

= 0.0060

P ifP

(a) Variation of nozzle drag coefficient.

Figure 5.- Variation of nozzle drag coefficient, thrust-minus-drag ratio,
thrust ratio, and mass-flow ratio with nozzle pressure ratio for
configuration D-1.22-S. Dashed line indicates theoretical values.
Flagged symbols indicate data used to determine F/F;.
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Figure 5.- Continued.
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Configuration D-1.22-M
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(a) Variation of nozzle drag coefficient.

Figure 6.~ Variation of nozzle drag coefficient, thrust-minus-drag ratio,
thrust ratio, and mass-flow ratio with nozzle pressure ratio for
configuration D-1.22-M. Dashed line indicates theoretical values.
Flagged symbols indicate data used to determine F/Fj.
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Configuration D-1.22-L
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(a) Variation of nozzle drag coefficient.

Figure 7.- Variation of nozzle drag coefficient, thrust-minus-drag ratio,
thrust ratio, and mass-flow ratio with nozzle pressure ratio for
configuration D-1.22-L. Dashed line indicates theoretical values.
Flagged symbols indicate data used to determine F/Fj.
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Configuration D-2.24-S
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(a) Variation of nozzle drag coefficient.

Figure 8.- Variation of nozzle drag coefficient, thrust-minus-drag ratio,
thrust ratio, and mass-flow ratio with nozzle pressure ratio for
configuration D-2.24-S. Dashed line indicates theoretical values.
Flagged symbols indicate data used to determine F/Fj.
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(c) Variation of thrust ratio and mass-flow ratio at supersonic speeds (UPWT).
Figure 8.~ Continued.
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Configuration D-2.24-M
M = 0.8, cD,nf = 0.0075
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(a) Variation of nozzle drag coefficient.

Figure 9.- Variation of nozzle drag coefficient, thrust-minus-drag ratio,
thrust ratio, and mass-flow ratio with nozzle pressure ratio for
configuration D-2.24-M. Dashed line indicates theoretical values.
Flagged symbols indicate data used to determine F/Fj.
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(a) Variation of nozzle drag coefficient.

Figure 10.- Variation of nozzle drag coefficient, thrust-minus-drag ratio,
thrust ratio, and mass-flow ratio with nozzle pressure ratio for con-
figuration D-2.24-L. Dashed line indicates theoretical values. Flagged
symbols indicate data used to determine F/Fj. '
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thrust ratio, and mass-flow ratio with nozzle pressure for configura-
Dashed line indicates theoretical values. Flagged

tion P-1.25-M.
F/Fj.

symbols indicate data used to determine

66




Configuration P-1.25-M

M = 0.90, cD,nf = 0.0073

I [ S

M = 0.95, CD, nf " 0.0072

.20

.16

2

.08

.04

M=120 C nf " 0. 0069

T

D

P, P

(a) Continued.

Figure 11.- Continued.

67



68

Configuration P-1.25-M

M = 2.16, cD,nf = 0.0064

t BHH i
HiH £
Hi H
f it
I THH A
= Euga b fl H
B 3
Hre Hit ,
et il
i
i 3
1T
: HJ I i
S
T Hi]
3] il I f
T o
AT
Epsafits] !
T i H
.uuﬂ
£ 141
S

.04

M= 2.50,_CD nf 0. 0060

1 11
5 2
H B
e T
THHHEBHH
it
sedanns A2 g NEA|
HE A TR
Eeast I

353 3

T

eaad]
jasegad bes:
f

M = 2,86, CD nf " 0.0056

gaans

dh

L

T

THTHH

3o

T
1

T
+

1 by

1

+

T

HHHH I

e

T R R

T

HH

.08

.04

20 24
P fPeo

16

12

(a) Concluded.

Figure 11.- Continued.




P-1.25-M

60
.8
.8
.90
.95
.20
ical

- —@— Adjusted UPWT M = 0 data

k o 55 I ;
H 8 N " L H
Hil ] H HEH
yuuwn HIHL (@] m) AV Y NQ a ...m & .
IEHHIEHE it i _ ih i 2
R | Il .
e e e
I i B
I HH [ H HilH e H i HHHHH
1 {iHHH 1t ..A tH Lm i M HILH H b HHH fEdsiEis
i it s LT HLE it zsthesh ifitEES
1| EEgfisesstitiird Hilicschiliatililcatinatiis ke biipscatitapistibatechic L HEHEE o
A TR i R B T e -
Ak R R P R P A e {10
il e . \
R T T LR e aiflilbical st o
i ST ‘u” Iyu,hw.ww T [ = 2
HHRRIH hmn B .mur HTH T R HiTEA il 1) {H1 m; i Jn
R TT T T e s e B [ (T TRt =
il e e R L i
H 1 kadies H il HitH & Sytedefasiqaeiy
i ot hbg T T R e R
i il i e T T e e L e
e Hlil L Ell] H H HHHH ifi m”mn o
m il l|v ‘v ﬁ. Iv xxn H i (1 “ H Amn 28 T w tH m.w\w 8 &4
i sgHIE A HAIR IR il i
: , Mg IR e
H it HERLT S i i
i ! JTEIL b | M il
i e AL A H Hi i
] i Py [HHHIHE ¥ i ' e 41.m o
| i bR T Iy il il
i GG e ARG s
il z i T il S

1.00

.96 £

.92

.88
84
80
1.04
LO0E=
.96

FIF;

Wp/ W

(b) Variation of thrust ratio and mass-flow ratio at subsonic and transonic speeds (16FTT).

Figure 11.- Continued.

69




oL

P-1.25-M

H
FHT pas
t
s i
I paas i
s e S
b 12 st :
2 i
F/F;
i
T : : i
+ I
E
M
o 0
HE )
T H .
i ]
e e e et = H i £ a 2%
T T N I T 1L
i 4- = F=rt : i = i S — — — — Theoretical
: Seen e RiEE = } TS
— =E=E i . e i ;
6 E i e i e i HE - Adjusted mass-flow ratio
1.1 T T T —
i i :
jestapanglbnd H
H ssgasaamame P T
Hlles : it
WyWi Lo :
o
Sl SR : i = i f
= ; t
e R 2 e R ]
] e Ees ek Bree] i ped rreet T Er T f2esi By
9 E T 2} ; ! } } }

0 4 8 12 16 20 24 28 32 36 a0 a1 48

R, Peo
(c) Variation of thrust ratio and mass-flow ratio at supersonic speeds (UPWT).

Figure 11.- Continued.



P-1.25-M

1.0 e e T
.ﬁﬂ =
A s B e e
e & = — : :
(== , =% =
7 7
8 :
g M
'g 0.60
{(F-DMF; .80
g 2 .85
.90
| .95
0 120
.5 o 2.1
O 2.5
a 2.8
A
.3
0 24 48
pt,j/poo

(d) variation of thrust-minus-drag ratio.

Figure 11.- Concluded.

LL



Configuration P-2.24-S
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Figure 12.- Variation of nozzle drag coefficient, thrust-minus-drag ratio,
thrust ratio, and mass-flow ratio with nozzle pressure ratio for
configuration P-2.24-S. Dashed line indicates theoretical values.
Flagged symbols indicate data used to determine F/Fj.

72



€L

Configuration P-2.24-S

M =216 C = 0.0064

D, nf

M = 2.50, CD,nf = 0.0059

e e i i
e R i O HEEHRHE HE

M = 2,86, C[),nf = 0.0055

SR
EREE 2 S
B = IESEESER
et elist st
= S = B :
=1 tF +
IS ey s S L 1
5 HR IEet] sl 1lis
| o=t $31 s it 23] 1
48 a0 & 120

24 3 0 u“

%/ﬂ»

(a) Concluded.

Figure 12.- Continued.



PL

1.00

Configuration P-2.24-S

.96

.92

M

FIF;
88

0

80

.90

.9

DDOANCO

1.20

— — — ~—— Theoretical

— —@— Adjusted UPWT M = 0 data

1.00
Wo/ Wi

.96

T
|||||

.....

|||||

nnnnn

T

4 6 8 10 12 14 16

Y j/ Poo

(b) Variation of thrust ratio and mass-flow ratio at subsonic and transonic speeds (16FTT).

Figure 12.- Continued.



SL

P-2.24-S

1'0 R

¥ EEEE H
9 E e :

AR 8 I ‘ = "

.16
.50

D<oOO
oo

........ i 2.8 I

e e e e 3;; — — — — Theoretical
FEF e e P Sl e o ! i - Adjusted mass-flow ratio &

Wp/ Wi

= i B
TR

@ 16 20 2 28 2 % a0 M a8 0
B if P
(c) Variation of thrust ratio and mass-flow ratio at supersonic speeds (UPWT).

Figure 12.- Continued.




76

wosofoo
= 0”01215

=] —ol oo

T
T
T

T
T
T

Configuration P-2.24-S

e ONwao<ed BHH
T HEE
gt Il it iyt
H RN T M
- I
et Hutiil |
i il 1
H H i
H R H H ﬁ
gictsesesapes eI RN IC AR
E i i
R T T H il Il
u - HBORGHHAHHG it
O i i it it
0 HHHHH £ ! fl & H
HHEH HEHH] ! LT R R H R HH [
: i . ] %J i
it il
§ R jiiili i il il
B Y AT T [l
H H { i
; gl i | ik
. s e Hitistiithali (L
: i i
e L il
KK EHH seniil s i |
i i it I ” tH] I
HH o 5 z=s 7. ! f L L
| HE

8
N
6
5

110

100

90

70

60

50

40

30

20

10

pt,j/poo

(d) variation of thrust-minus~drag ratio.

Figure 12.- Concluded.



Configuration P-2.24-M
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Figure 13.- Variation of nozzle drag coefficient, thrust-minus-drag ratio,
thrust ratio, and mass-flow ratio with nozzle pressure ratio for
configuration P-2.24~-M. Dashed line ind®cates theoretical values.
Flagged symbols indicate data used to determine F/Fj.
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Configuration P-2.24-L
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(a) Variation of nozzle drag coefficient.

Figure 14.- Variation of nozzle drag coefficient, thrust-minus~-drag ratio,

thrust ratio, and mass-flow ratio with nozzle pressure ratio for

configuration P-2.24-L.

Dashed line indicates theoretical values.

Flagged symbols indicate data used to determine F/Fj.
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(a) Variation of nozzle drag coefficient.

Figure 16.- Variation of nozzle drag coefficient, thrust-minus-drag ratio,
thrust ratio, and mass-flow ratio with nozzle pressure ratio for
configuration P-1,89-M. Dashed line indicates theoretical values.
Flagged symbols indicate data used to determine F/F;j.
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(c) Variation of thrust ratio and mass~flow ratio at supersonic speeds (UPWT)
Figure 16.~ Continued.
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(a) variation of nozzle drag coefficient.

Figure 17.- Variation of nozzle drag coefficient, thrust-minus-drag ratio,
thrust ratio, and mass~flow ratio with nozzle pressure ratio for
configuration A~1.25-S. Dashed line indicates theoretical values.
Flagged symbols indicate data used to determine F/Fj.
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(a) Variation of nozzle drag coefficient.

Figure 18.- Variation of nozzle drag coefficient, thrust-minus-drag ratio,
thrust ratio, and mass-flow ratio with nozzle pressure ratio for
configuration A-1.25-M. Dashed line indicates theoretical values.
Flagged symbols indicate data used to determine F/F;.

106



Configuration A-1.25-M

M = 0.90, CD,nf

0.0078

[ogedgadn

;,

A

Wt

Sl

il

= 1.20, CD,nf 0.0074

M

pt’j/p°°

(a) Continued.

Figure 18.- Continued.

107



Configuration A-1,25-M

108

M = 2.16, CD, nf " 0.0069

¥

HHHRHH

R

T

t
T

T

iaEmEnanan:

iSan Amana A na

EEanmasmEEAEaa RS

HH

T

inwaa:

inRNBmaRREmaE]

HHEHT

A S EeERusuansans

T

T
+
:
1

:

iasnann:

iaBnanma:

+
T
:

seedie:

T

T
prayets
t

He

e 0. 0064

M = 2,50, CD

-.04

M = 2.8, CD,nf = 0.0060

48

221

1
o ps

Hirgae

T

ashs

THA T
ot

H
HH

T
T

+

1

HiHT
HHT

40

T

T

T

e

T
T
}

AT

t
H

32

i

28

24

HH =s1H2
HiEH

20

16

=TT

T

P, Peo

(a) Concluded.

Figure 18.- Continued.



60L

Configuration A-1.25-M

1.04

:
1.00 e :
= = = =
i , :
Y = *
: :
= :
£
96 v 2 T T H
f = :
7 =
e
¥ 77
: =
7
T .2 F
F/Fi e
=
=0
= Py
92 E=E :
. E ; M
:
=
- T
Era REEE:
e L T
7 ] o 0
i == .
B EE
=
: : : 0
el
SR Em e e R :
. ; = O &0
= = ; : , .
T i H ia=ams e T
Eal ‘ : : : .
( ==
: s Enzas su; L .
S e P : 4
. 5 7 i e .90
i S B
e T ( =
i iR i : ‘
i T
: 2 RS i R .
HHES HHHERHHTE T LD t
84 HhH + HHH 1 e D 120
—— - —@— Adjusted UPWT M = 0 data
1.04 :
.
==
==
e
a
=== =
=
‘ :
E : =
‘ : 7
: E : T s : ‘ !
i e ] = =
. ; = 3zt
g = =
: T e HE
; i SEn
i : 22 i .
= o1 o b= + {
wena it T T L H T
e uds T T T T T T t
HilEs , giimnt et
e s : S
F i : e e
96 i EHEnE : S et e
et EHIHERE

pt’j/pw

(b) Variation of thrust ratio and mass-flow ratio at subsonic and transonic speeds (16FTT).
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(a) Variation of nozzle drag coefficient.

Figure 19.- Variation of nozzle drag coefficient, thrust-minus-drag ratio,
thrust ratio, and mass-flow ratio with nozzle pressure ratio for
configuration A-1.25-L. Dashed line indicates theoretical values.
Flagged symbols indicate data used to determine F/Fj.
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(a) Variation of nozzle drag coefficient.

Figure 20.- Variation of nozzle drag coefficient, thrust-minus—-drag ratio,
thrust ratio, and mass-flow ratio with nozzle pressure ratio for
configuration A-1.97-S. Dashed line indicates theoretical values.
Flagged symbols indicate data used to determine F/Fj.
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Configuration P-2.24(Sharp)-L
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Configuration A-1.25-L(Cusp)
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Figure 27.- Nozzle pressure-coefficient distributions for configura-
tion D-2.24-S. Dashed line indicates theoretical values.
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Figure 28.- Nozzle pressure-coefficient distributions for configura-
tion D-2.24-M. Dashed line indicates theoretical values.

149



150

M = 2.16

7777777

P/

O Jet off

0 GHEH ) 9,67
O 17,97

O 25,95 » it

M = 2.50

1 g ,
By o Py

1]

Jet off

12.90

24.15

o
>OOO

35.98

P /P

Jet off

13.09 3

28.84

lejule

25.87

-1 ﬁ’
1 H ] | I i
I il 1 i Lt HH

1 i i AR i

x/l

(b) M= 2.16 to 2.86.

Figure 28.- Concluded.

L0



x/t

(a) M = 0.90 and 1.20.
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Figure 31.- Nozzle pressure-coefficient distributions for configura-

tion P-2.24-S. Dashed line indicates theoretical values.
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Figure 32.— Nozzle pressure-coefficient distributions for configura-
tion P-2.24-M., Dashed line indicates theoretical values.
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Figure 33.- Nozzle pressure-coefficient distributions for configura-
tion P-2.24-L. Dashed line indicates theoretical values.
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Figure 34.- Nozzle pressure-coefficient distributions for configura-



(b) M = 0.90 and 1.20.

Figure 34.- Continued.
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(a) M = 0.60 and 0.80.

Figure 36.- Nozzle pressure-coefficient distributions for configura-
tion A-1.25-S. Dashed line indicates theoretical values.
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M = 0.60

(a) M = 0.60 and 0.80.

Figure 37.- Nozzle pressure-coefficient distributions for configura-
tion A-1.25-M. Dashed line indicates theoretical values.
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{a) M = 0.60 and 0.80.

Figure 38.- Nozzle pressure-coefficient distributions for configura-
tion A-1.25-L. Dashed line indicates theoretical values.
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